Diffusive stability of oscillations in reaction-diffusion systems

نویسندگان

  • Thierry Gallay
  • Arnd Scheel
چکیده

We study nonlinear stability of spatially homogeneous oscillations in reaction-diffusion systems. Assuming absence of unstable linear modes and linear diffusive behavior for the neutral phase, we prove that spatially localized perturbations decay algebraically with the diffusive rate t−n/2 in space dimension n. We also compute the leading order term in the asymptotic expansion of the solution, and show that it corresponds to a spatially localized modulation of the phase. Our approach is based on a normal form transformation in the kinetics ODE which partially decouples the phase equation, at the expense of making the whole system quasilinear. Stability is then obtained by a global fixed point argument in temporally weighted Sobolev spaces. Corresponding author: Arnd Scheel

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Double diffusive reaction-convection in viscous fluid layer

In the present study, the onset of double diffusive reaction-convection in a uid layer with viscous fluid, heated and salted from below subject to chemical equilibrium on the boundaries, has been investigated. Linear and nonlinear stability analysis have been performed. For linear analysis normal mode technique is used and for nonlinear analysis minimal representation of truncated Fourier serie...

متن کامل

On the onset of triple-diffusive convection in a layer of nanofluid

On the onset of triple-diffusive convection in a horizontal layer of nanofluid heated from below and salted from above and below is studied both analytically and numerically. The effects of thermophoresis and Brownian diffusion parameters are also introduced through Buongiorno model in the governing equations. By using linear stability analysis based on perturbation theory and applying normal m...

متن کامل

Hopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response

In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008